
Acta Cryst. (2013). A69, 535–542 doi:10.1107/S0108767313020655 535

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 5 June 2013

Accepted 25 July 2013

# 2013 International Union of Crystallography

Printed in Singapore – all rights reserved

Nets with collisions (unstable nets) and crystal
chemistry

Olaf Delgado-Friedrichs,a Stephen T. Hyde,a Shin-Won Mun,b Michael O’Keeffeb,c*

and Davide M. Proserpiod,e

aDepartment of Applied Mathematics, Research School of Physics, Australian National University,

Canberra, ACT 0200, Australia, bGraduate School of EEWS(WCU), KAIST, 373-1, Guseng Dong,

Yuseong Gu, Daejeon 305-701, Republic of Korea, cDepartment of Chemistry and Biochemistry,

Arizona State University, Tempe, AZ 85287, USA, dUniversità degli Studi di Milano, Dipartimento
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Nets in which different vertices have identical barycentric coordinates (i.e. have

collisions) are called unstable. Some such nets have automorphisms that do not

correspond to crystallographic symmetries and are called non-crystallographic.

Examples are given of nets taken from real crystal structures which have

embeddings with crystallographic symmetry in which colliding nodes either are,

or are not, topological neighbors (linked) and in which some links coincide. An

example is also given of a crystallographic net of exceptional girth (16), which

has collisions in barycentric coordinates but which also has embeddings without

collisions with the same symmetry. In this last case the collisions are termed

unforced.

1. Introduction

In this paper we are concerned with periodic nets which are

simple connected periodic graphs [see e.g. Delgado-Friedrichs

& O’Keeffe (2005) for terminology and definitions] often

encountered in the analysis of the topology of crystal struc-

tures. It is convenient at the outset to distinguish between

abstract nets and their Euclidean embeddings (Chung et al.,

1984). Specifically in this paper the vertices and edges of the

graph correspond to nodes and links in an embedding. One

reason for doing this is that we want to refer to the length of a

link, whereas the ‘length’ of a single edge of a graph has no

meaning.

The classical nets of crystal chemistry are mostly the nets of

sphere packings, i.e. they have embeddings in which all links

are of equal length and are the shortest distances between

nodes. The net of diamond is a familiar example. The

taxonomy of such nets and their relevance to materials design

are now reasonably well established (Delgado-Friedrichs et al.,

2007) at least for those nets which admit tilings. However,

particularly as the synthesis of metal–organic frameworks

(MOFs) has developed, many nets have been discovered that

do not admit tilings because many of the strong rings (cycles

that are not the sum of smaller cycles) are catenated with

other rings (Delgado-Friedrichs et al., 2005). A recent example

of a crystal structure based on a net in which every ring is

catenated with another is provided by Yu et al. (2012). In the

present paper we call attention to another class of nets, so far

little discussed, in which different nodes are at the same site in

high-symmetry embeddings. Some of these are also nets with

entangled strong rings.

A very useful approach to analysis of periodic nets is to first

compute a placement in which one vertex is arbitrarily

assigned coordinates (e.g. 0, 0, 0) and the rest then assigned

barycentric coordinates that are the average of those of their

neighbors. It is easy to show that this results in a unique set of

coordinates (Delgado-Friedrichs, 2005). These are unit-cell

coordinates in the usual crystallographic sense and are inde-

pendent of any metric associated with the size and shape of the

unit cell; for this reason one refers to a placement rather than

an embedding. The idea appeared early in the work of Tutte

(1960, 1963) on finite graphs. The resulting set of coordinates

for periodic graphs has been called a standard realization by

Kotani & Sunada (2000) and an equilibrium placement by

Delgado-Friedrichs (2004, 2005). These authors show that

the coordinates are those that would result at equilibrium

(minimum energy) for any finite fixed unit-cell volume if the

links of the net were replaced by uniform harmonic springs. As

discussed below, for certain graphs two or more nodes have

identical barycentric coordinates and we say that such a

graph has collisions. Graphs without collisions were called

stable by Delgado-Friedrichs (2005). Barycentric coordinates

are central to the algorithms of Systre, a computer program for

determining the symmetry and identity of periodic nets

(Delgado-Friedrichs & O’Keeffe, 2003) and which was used to

determine symmetries in this work.

Recently we have called attention to a class of nets with

collisions that nevertheless have crystallographic symmetry
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(de Campo et al., 2013; see also Eon, 2011). This raises the

questions as to what are the requirements for a graph with

collisions to be crystallographic and whether such nets are

relevant to crystal chemistry. The latter question is addressed

in this paper. We do not discuss nets known to have non-

crystallographic symmetry (‘NC nets’) which have been the

topic of several recent publications (Moreira de Oliveira Jr &

Eon, 2011, 2013). Nor do we discuss the possible symmetries of

embeddings with all finite links of unstable graphs; that topic

has also recently been addressed by Thimm (2009) and by Eon

(2011).

We have occasion below to refer to the quotient graph of a

net. This is the finite graph with all translationally equivalent

points merged into one, and the edges labeled to indicate the

adjacencies of vertices (Chung et al., 1984).

We will find examples of different graphs that have

embeddings with identical arrays of nodes and links (i.e. they

coincide as sets of points and lines). Following a suggestion of

Grünbaum (2003) we refer to such structures as isomeghethic.

Net symbols of the sort abc or abc-d are RCSR (Reticular

Chemistry Structure Resource) symbols (O’Keeffe et al.,

2008) and data for them are available at the RCSR web site

(http://rcsr.anu.edu.au/). That site also reports vertex symbols

(Blatov et al., 2010). The nets discussed here generally have

very high topological density (O’Keeffe, 1991). The RCSR

reports TD10 which is the average over all vertices of the

number of vertices reachable from each vertex in paths of

0 to 10 edges. Some also have exceptional girth (called

‘smallest ring’ in the RCSR). Nets for which the shortest rings

at every angle are equal are called uniform by Wells (1977),

who attached special importance to them in crystal chemistry.

Several of the nets in this paper are uniform.

2. Polygons and polyhedra with collisions

It is instructive to first consider some finite structures with

collisions between vertices. Specifically an abstract p-gon (a

polygon with p vertices) is a simple cycle with p vertices and p

edges. The regular polygons were long ago generalized from

those with embeddings as a convex figure with symbol {p} to

include the star polygons {p/n} (illustrated in Fig. 1 for p = 8).

Usually p and n are considered co-prime but, as Grünbaum

(2003, 2007) points out, for complete generality one should

really take all cases of n � p/2 even though nodes become

coincident when p and n are not co-prime.

These generalized polygons can serve as the faces or vertex

figures of regular polyhedra with Schläfli symbol {h; k} in

which faces are {h} and the vertex figures are {k}. The Platonic

solids are {3,3}, {3,4}, {4,3}, {3,5} and {5,3}. Adding star poly-

gons one gets the regular icosahedral Kepler–Poinsot poly-

hedra {5/2,3}, {3,5/2}, {5/2,5} and {5,5/2}. Grünbaum adds to

these regular polyhedra such as {6/2,3} and {8/2,3} (see Fig. 2),

{12/3,3} and so on indefinitely. {6/2,3} is the same combinato-

rially as the cube {4,3}, a fact that emphasizes that the cube can

also be considered as having intersecting faces that are skew

hexagons (Petrie polygons, see e.g. O’Keeffe, 2008) so {6/2,3}

does not have a maximum-symmetry embedding with coin-

cident nodes.

3. Non-crystallographic and crystallographic nets with
collisions

Perhaps the simplest case of occurrence of collisions in nets is

when two vertices have the same neighbors (Moreira de

Oliveira Jr & Eon, 2013). Clearly there is a net automorphism

that simply involves interchanging those two vertices leaving

the rest fixed. This cannot correspond to a crystallographic

symmetry operation which acts on rigid bodies. Such non-

rigid-body symmetries can lead to complicated automorphism

groups, as is well documented for non-rigid molecules

(Longuet-Higgins, 1963). They are sometimes called ‘local

symmetries’ but this term is also used to refer to short-range

spatial arrangements in crystals. Moreira de Oliveira Jr & Eon

(2013) call them ‘bounded automorphisms’. A common

occurrence of such collisions in the graph of a chemical

structure is found in the familiar copper carboxylate paddle-

wheel shown in Fig. 3. Usually in determining the underlying
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Figure 1
The regular octagons. In each case the edges are 12 23 34 45 56 67 78 81.

Figure 2
Left, the polyhedron {6/2,3}. One hexagonal face is in black. Right, the
polyhedron {8/2,3}. Two octagonal faces are shown in black and magenta,
respectively.

Figure 3
Left, part of a structure with the paddlewheel secondary building unit.
Carbon atoms black, oxygen red and copper blue. On the right the –O–
links shown as single links and the two Cu atoms linked to the same four
C atoms.



topology of a molecule or crystal, 2-coordinated (2-c) nodes

such as a linking –O– atom are subsumed into edges so that

both Cu atoms are considered directly linked to the same four

carboxylate C atoms (the points of extension of the copper

secondary building unit). The usual procedure at this point in

determining a net is simply to replace the two Cu atoms with

one 4-c node.

A generalized ladder is obtained when a finite number (two

or more) of identical interpenetrating nets are joined by extra

links in such a way that the nodes connected by the extra links

are in identical orientation. In such a situation there are

automorphisms of the whole structure that map any copy of

the component nets to any other copy while not changing their

orientation in space. If these automorphisms were to be taken

as crystallographic operations they would have to be transla-

tions, but because they are a finite set that is clearly impos-

sible. An example of a 3-periodic ladder is shown in Fig. 4. The

embedding comes from a sphere packing with an embedding

in I4132. This is the sphere packing 4/3/c26 of Fischer (1974)

with RCSR symbol uld-z.1

On the other hand if all colliding nodes were linked to

different nodes, that did not themselves collide with each

other, they can be distinguished and symmetry determined.

Thus two or more component subnets could come together

without links superimposing. We call these antiladders. A

simple example is shown in Fig. 4 in which the components are

rods running in orthogonal directions. This example is in fact

the net called 4(3)5, one of the crystallographic minimal nets

with collisions discussed by de Campo et al. (2013) and Eon

(2011).

The process of distinction of nodes by their neighbors can

be extended to further neighbors, but after next-nearest

neighbors the procedure becomes rather complex to imple-

ment in practice. Indeed, the computer program Systre, which

is the major source of symmetry information for periodic

graphs, gives up at the point where next-nearest neighbors

have collisions. In all the unstable nets discussed in this paper

colliding vertices are distinguishable as described above, and

Systre reports a crystallographic symmetry and an embedding

in that symmetry which is used in this work.

It should be remarked that Systre only looks for auto-

morphisms of the net that are consistent with the given peri-

odic structure, i.e. a translation group T. In principle it is still

possible that other automorphisms could occur as described

by Moreira de Oliveira Jr & Eon (2011) and we cannot at

present prove their absence mathematically. To allow for this

eventuality we say that our nets are T-crystallographic and

refer to the symmetry determined by Systre as the Systre

symmetry. However our main purpose is simply to get a

crystallographic symmetry so we can present an embedding

with collisions required by that symmetry.

4. Nets with zero-length links in maximum-symmetry
embeddings

4.1. A net based on interpenetrating diamond nets

We (de Campo et al., 2013) earlier called attention to the

fact that, although all the minimal (genus 3) nets had crys-

tallographic symmetry (Eon, 2007), seven of them had colli-

sions in their maximum-symmetry embeddings. In those

embeddings they were isomeghethic to one of the minimal

nets without collisions. We have not yet identified any of these

minimal nets with collisions as the topologies of real crystal

structures. However, an interesting structure reported by

Montney et al. (2007) does have an underlying topology of

this type. In the structure (2) of those authors, four inter-

penetrating 4-c dia (diamond) nets are joined into one

continuous network by a fifth link between pairs of nodes. An

illustration with symmetry Pbcn (the same as the observed

crystal structure) is in Fig. 5. The net has the interesting

property that each dia subnet is directly joined to only two of

the three others and in fact can also be drawn as two inter-

penetrating dia nets joined by a fifth link as shown in Fig. 6. In

that drawing links partly overlap; however, in the limit of a full

symmetry embedding, one link has zero length and nodes
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Figure 4
Left, a fragment of a 3-periodic ladder structure (the ‘rungs’ are green).
Nodes are all 4-coordinated as shown near the top and bottom. Right,
an ‘antiladder’ structure from de Campo et al. (2013). Rungs are again
green. Red and blue nodes collide and the resulting structure is tetragonal
(P42/mmc) isomeghethic with cds.

Figure 5
Four interpenetrating diamond nets joined by a fifth link, black. Note that
the red and blue nets are not directly linked, nor are the yellow and green
ones. This is net rld-z.

1 The net of this sphere packing is the same graph as that of sphere packing
4/3/c25 but the two embeddings (uld and uld-z in the RCSR) are not ambient
isotopic (cannot be transformed from one to the other without breaking and
reforming links) (see Moreira de Oliveira Jr & Eon, 2013).



coincide in pairs. The Systre symmetry is Im�33m with both

vertices at 0, 0, 0 so it is in fact isomeghethic with the net of the

nodes of the body-centered lattice with shortest lattice vectors

as links, RCSR symbol bcu. Another notable feature of the

structure is that all the rings are 6-rings with three at each

angle so 30 meeting at each vertex (compare 12 meeting at

each vertex for dia). In the RCSR the Pbcn embedding is

given with the symbol rld-z. The extension -z indicates that the

embedding is not a maximum-symmetry one. In that embed-

ding all links are equal length and do not intersect or overlap;

it is an interesting question whether this is the highest-

symmetry embedding with this property.

4.2. Other nets derived from linked interpenetrating pairs of
diamond nets

Linked pairs of diamond nets give rise to a number of other

interesting topologies. Fig. 7 illustrates the most symmetrical

(Pn�33m) embedding of a pair of interpenetrating diamond nets.

This has been known in crystal chemistry for 100 years as the

structure of the O atoms of cuprite, Cu2O, with –Cu– acting as

links (Bragg & Bragg, 1915). Connecting the two vertices in

the unit cell gives a 5-c stable net with symmetry R�33m with

RCSR symbol fnu (Fig. 7). This net also has all 6-rings, now

with 48 meeting at each vertex. It might be noted that,

although many of those rings are catenated with other rings as

they come from catenated dia nets, not all are catenated and

this net does admit a tiling (Blatov et al., 2007).

If only half the vertices were linked to produce a (4,5)-c net

as shown in Fig. 8, then one gets again a net with collisions

(data given in the RCSR as sld-z). The pairs of newly linked

vertices collide and now one gets a structure isomeghethic

with the fluorite net, flu, and with symmetry Fm�33m, pairs of 5-c

vertices at 0, 0, 0 and single 4-c vertices at 1
4 ;

1
4 ;

1
4. A double

interpenetrated sld-z is observed for a viologen Zn complex

(Tan et al., 2012), although the authors did not discuss it in

these terms.

If, alternatively, nodes of pairs of diamond nets were linked

so that previously unlinked nodes in the same orientation are

linked, then in barycentric coordinates two copies of the same

structure, including links, are superimposed. Accordingly the

structure is a (non-crystallographic) ladder.

Fig. 9 shows quotient graphs for the diamond-related nets.
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Figure 8
An equal-link embedding (sld-z) of a (4,5)-c net with collisions. Red and
blue links outline dia nets.

Figure 7
Left, the cubic (Pn�33m) cell of two interpenetrating dia nets. Right, a
primitive rhombohedral (R�33m) cell of fnu. The extra link is along [111] of
that cell.

Figure 9
Quotient graphs for nets with dia nets as sub-graphs.

Figure 6
A fragment of two interpenetrating dia nets linked by a short fifth link.
Note that the only links are between nodes colored red and blue.



4.3. A net with collisions related to the ths net

Our next net, RCSR symbol hxc, was found in a copper

imidazolate MOF by Huang et al. (2004). Long and shorter

ditopic linkers combine to link Cu atoms into a uninodal 4-c

net as shown for the real structure with symmetry P21/n in Fig.

10. This net has vertex symbol 4.84.84.86.84.86, i.e. 24 8-rings

meeting at each vertex, and is rather dense (TD10 = 1918,

compare 981 for dia). The structure has collisions in the Systre

symmetry of I4/mmm and pairs of nodes in 0, 0, z with z �

0.18. Now 4-rings collapse so both links and nodes collide as

shown in the figure. The figure also illustrates that again the

net can be considered as four linked subnets, that are now the

3-c minimal net ths (rather than the 4-c dia in the previous

example), joined by zero-length links. There are just four

nodes in the primitive cell – the same as for ths and ths-c4

(four interpenetrating ths nets) and the structure is isome-

ghethic with the 5-c net sqp, also shown in Fig. 10.

It is interesting that the quotient graph for four inter-

penetrating ths nets can be labeled in such a way that addi-

tionally linking two pairs of vertices with edges labeled 0, 0, 0

produces the quotient graph for hxc (Fig. 11).

4.4. A net with collisions related to the srs net

A structure of two linked srs nets was recently reported by

Wang et al. (2013). In that work it was found that a copper

cyanide MOF formed two interpenetrating 3-c nets with the

srs topology with opposite hand. srs, like ths of the previous

example, is a minimal net as it has the minimal number (four)

of 3-c vertices in the repeat unit. One fourth of the nodes in

the nets are Cu atoms which form Cu–Cu links between the

two nets. In barycentric coordinates these pairs of vertices

collide and the Systre symmetry becomes R3m. For the two

nets to have the exact shape of the cubic srs net the 3-c vertices

are at 1
4, 0, 0 and the 4-c vertices collide in linked pairs at 0, 0, 0.

For unit link length the unit-cell parameters are a = 4, c = 61/2.

This structure is illustrated in Fig. 12. The net has an embed-

ding as a sphere packing (links equal and the shortest distance

between nodes) in R3 with a = 4.000, c = 2.4495, 4-c nodes at 0,

0.0, 0.2041 and 3-c nodes at 0.0000, 0.2500, 0.2041. The vertex

symbol is (8.8.106)3(82.105.82.105.82.105.). This is assigned

RCSR symbol llw-z.

The quotient graph is just a linked pair of graphs K4 (the

complete graph with four vertices) as shown in Fig. 13.

5. A net with collisions but with all links of non-zero
length

A less common occurrence is that of nets in which at

maximum-symmetry embedding nodes collide but all links

have finite length. Indeed we are aware of just one example

from a crystal structure (Ma et al., 2013). Linking Cu2(–CO2)4

paddlewheels with a very non-planar tritopic carboxylate

linker gave a new edge-transitive (3,4)-c net with RCSR

symbol mhq. The structure is uniform of girth 12 – the vertex

symbol is (1215.12151215)4(126.126.1212.1212.1212.1212)3. As Ma

et al. discuss, the structure is topologically very dense and the

12-rings catenated to a remarkable degree.
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Figure 11
Quotient graphs for ths-c4 and hxc. The graph on the right has the same
labeling as that on the left but with two extra edges (shown as diagonal
lines with labels 000).

Figure 13
The quotient graph of the net shown in Fig. 12.

Figure 10
(a) An embedding of the net hxc using the coordinates of the nodes in the
crystal structure. (b) An embedding with short links (black). In the
maximum-symmetry embedding those links have zero length. Different
color links belong to separate ths nets. (c) A primitive cell of the sqp net
isomeghethic with the maximum-symmetry embedding of hxc.

Figure 12
Two srs nets (red and blue) of opposite hand colliding at the nodes shown
in black.



The crystal structure has symmetry F432 and an embedding

of the net in that symmetry is obtained with the 4-c vertex at

x1, 0, 0 and the 3-c vertex at x2, x2, x2 with links from x1, 0, 0 to
1
2� x2, x2, 1

2 + x2 as shown in Fig. 14 (drawn with x1 = 0.25 and x2

= 0.3). However the Systre symmetry is the supergroup P432

with a0 = a/2 and the 3-c vertices merge in groups of four to a

common coordinate set as suggested in the figure. The struc-

ture specification in P432 is 4-c vertex at 1
2, 0, 0 and four 3-c

vertices at 0, 0, 0 with edges from 0, 0, 0 to 1
2 ;

1
2 ; 0; note

however the ambiguity in this description – a point at 0, 0, 0

has 12 neighbors symmetry-related to 1
2 ;

1
2 ; 0 and is isome-

ghethic to the (4,12)-c net ftw. Accordingly the net topology is

best specified either by its lower-symmetry embedding or its

quotient graph (see below).

The net is interesting in that there are embeddings in F432

with links of arbitrarily large length (measured in units of the

unit-cell edge length a). Thus links from 1
2 � x2, x2, 1

2 + x2 to i +

x1, j; k with i; j and k integers, together with symmetry-related

links, are always embeddings of the same graph. So are links

from the same reference node (1
2 � x2, x2, 1

2 + x2) to i; j; k + x1.

However links, again from the same reference node, to i; j + x1,

k generally produce multiple copies of the same net in a

complicated way. For example a link to 0, x1, k produces

23.(k � 1)3 interpenetrating mhq nets.2

We call attention to yet another aspect in which the mhq net

is special. It and the edge-transitive (3,4)-c net bor are the only

two such nets known that have as quotient graph the complete

bipartite graph K3,4. These two quotient graphs are shown in

Fig. 15.

Finally we note that mhq has the largest girth (12) of any

known edge-transitive 3-periodic graph without 2-c vertices.

6. A second net with collisions and no zero-length links

Here we discuss another net that describes a crystal structure

(Volkringer et al., 2009).3 The structure contains Mg2O3(CO2)4

secondary building units (SBUs), joined to four tritopic linkers

and further linked to two other SBUs by a second ditopic

linker. Accordingly we abstract the topology as a (3,6)-c net

known as 3,3,6T26 in the TOPOS database (Blatov, 2006). In

barycentric coordinates unlinked nodes collide in pairs.

Another pair come close to colliding in barycentric coordi-

nates but if an equal link-length constraint is applied to the

embedding they also come together in pairs. In the crystal with

symmetry R�33 there are two distinct SBU centers (6-coordi-

nated) at nodes 1 and 2 in general positions 18f (36 nodes).

The linkers are of four topological types with 3-c nodes 3 and 4

in position 18f (36 nodes) and 5 and 6 at positions 6c: 0, 0, z (12

nodes) as shown in Fig. 16. In the Systre symmetry, R�33m,

embedding nodes 1 and 2 jointly occupy general positions 36i

and so do nodes 3 and 4. However, nodes 5 and 6 doubly

occupy 6c: 0, 0, z. The site symmetry is 3m and links to the 6-c

node in general positions must be sixfold [i.e. two sets of three

from identical positions in a (001) plane related by vertical

mirrors].

In the equal-link embedding nodes 3 and 4 come together at

18h: x, 2x, z. But this last is not a collision in the sense used in

this paper as the coordinates are not now barycentric.

7. A net of exceptional girth and unforced collisions

The question of the largest girth for periodic nets with a given

number of vertices in the quotient graph appears to be an
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Figure 14
Left, the net mhq in an F432 embedding. The unit cell is outlined in blue.
Right, an enlargement of the center of the figure on the left. At maximum
symmetry (P432) groups of four black nodes collide and the new unit cell
is that shown with green lines.

Figure 16
An embedding in R�33 of the (3,6)-coordinated net of the crystal structure
of Volkringer et al. (2009). The structure illustrated is close to equal links.
In barycentric coordinates the red nodes collide in pairs. In an equal-link
embedding both the red and green nodes collide in pairs.

Figure 15
Quotient graphs for two edge-transitive (3,4)-c nets. The graphs are the
complete bipartite graph K3,4.

2 Systre can be used to determine the number of interpenetrating nets. To give
a somewhat extreme example: using the operations of F432 a link from 0.2, 0.3,
0.8 to 100.25, 100.0, 100.0 produces a single copy of mhq; if the link is instead to
100.0, 100.25, 100.0 the number of copies of mhq is 63 044 792 (= 23.1993).
3 Our analysis differs from that of the original authors.



interesting one that has not yet received much attention. We

know of only one net of girth >13 that has been found in

crystal structures. This is oft – a uniform binodal 3-c net with

vertex symbol (148.148.148)3(144.148.148) which has been found

in several materials (Liu et al., 2008, 2010).

The largest girth periodic net we are aware of is a uninodal,

edge-2-transitive, 3-c one of girth 16.4 This was generated from

the uniform large-girth 4-c net ten (Delgado-Friedrichs et al.,

2005) which has vertex symbol 107.107.109.1013.1012.1012 (60

10-rings at each vertex). Deletion of one edge (edge E2 in

RCSR) produces a new 3-c net (Blatov, 2007). This net, with

RCSR symbol sxt, has vertex symbol 168.16.8.168. Interestingly

the stable net ten has symmetry I23 with nodes in general

positions 24f with only trivial site symmetry. On the other

hand sxt has the Systre supergroup symmetry I432 with

vertices now in 24i: 1
4, y, 1

2 � y and point symmetry 2. In

barycentric coordinates y = 1
4 and nodes collide in groups of

three at 8c: 1
4 ;

1
4 ;

1
4. That site has symmetry 32 but the individual

nodes only have symmetry 2. We call these unforced collisions

because there are embeddings without collisions in the same

symmetry but with y 6¼ 1
4. An embedding with y = 0.292, a value

that makes all links equal in length, is shown in Fig. 17. We

remark that, unless forced by symmetry, barycentric coordi-

nates are rarely used for embeddings of nets. In the RCSR for

example, the embeddings are, when possible, for equal links,

and then subject to that restraint, for minimal density.

8. Concluding remarks

We have shown by example that T-crystallographic nets with

collisions in barycentric coordinates indeed occur in crystal

structures. In some cases these collisions are unforced (not

required by symmetry) and full symmetry embeddings are

possible without coincident nodes or zero-length links. In

other cases full (Systre) symmetry embeddings are only

possible with more than one node at the same point and

possibly also links of zero length.

The quotient graphs presented herein were all verified by

Systre (available at http://gavrog.org). The nets in Systre-

readable format are available as supplementary information.5
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Figure 17
An embedding of the net sxt with equal links.
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finite graph with 3-coordinated nodes of girth 16 has 960 vertices (Biggs, 1989).
5 Supplementary material for this paper is available from the IUCr electronic
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